

UltraPure[™] Agarose

Cat. Nos.	Size
16500-500	500 g
16500-100	100 g

Store at 15 to 30°C

Description

UltraPureTM Agarose is a standard melting temperature, multi-purpose agarose that is ideal for routine separation analysis. UltraPure[™] Agarose resolves DNA and RNA fragments from 500-23,000 bp, and has no detectable DNase or RNase activity. It can also be used for:

- Analytical separation of DNA, RNA, and PCR fragments •
- Recovery of DNA, RNA, and PCR fragments •
- Southern and northern blotting of fragments •
- Ouchterlony and radial immunodiffusion (RID) •

Specifications 1.5% Conc. $\geq 1.200 \text{ g/cm}^2$ Gel Strength* Gel Point < 36°C Melting Point >90°C

* Gel strength is calculated at 1% concentration.

Usage

Refer to the table below for the recommended concentration of UltraPure™ Agarose needed to resolve DNA fragments of the approximate listed range:

Fragment Size	% Agarose (in 1X TAE)	% Agarose (in 1X TBE)	
1,00-23,000	0.60	0.50	
800-10,000	0.80	0.70	
400-8,000	1.00	0.85	
300-7,000	1.20	1.00	
200-4,000	1.50	1.25	
100-3,000	2.00	1.75	

Part No 251044W

Rev Date: 27 Jul 2010

Dissolving UltraPure[™] Agarose:

Method 1: Microwave

- 1. Determine the amount of agarose solution needed to cast your gel. Note: Remember to take the thickness of the gel into account, as it affects both well volume and power requirements.
- 2. Add room temperature buffer (TAE or TBE) into a flask that can hold 2–4 times the volume of your agarose solution. Place a magnetic stir bar into the flask.
- 3. Put the flask on a magnetic stirrer and slowly sprinkle the required amount of agarose powder into the flask as the solution mixes, to prevent the formation of agarose clumps.
- 4. Remove the stir bar.
- 5. Weigh the flask and solution before heating.
- Cover the mouth of the flask with plastic wrap, and pierce the wrap with a small hole for ventilation.
- 7. Place the flask in the microwave oven and heat the solution until bubbles appear.
- Remove the flask carefully, and swirl gently to resuspend any agarose particles. Exercise caution – microwaved solution may become superheated and foam over when agitated.
- 9. Reheat the solution until the solution comes to a boil, and all the agarose particles are dissolved.
- 10. Remove the flask carefully and swirl gently to mix the solution.
- 11. Place the flask on a scale, and bring it back to its initial weight (from Step 5) with warm distilled water.
- 12. Mix gently and cool to 50–60°C (at room temperature for at least 20 minutes) before pouring the solution into the casting tray.

Method 2: Boiling water bath

- Determine the amount of agarose solution needed to cast your gel. Note: Remember to take the thickness of the gel into account, as it affects both well volume and power requirements.
- 2. Add room temperature buffer (TAE or TBE) into a flask that can hold 2–4 times the volume of your agarose solution. Place a magnetic stir bar into the flask.
- 3. Put the flask on a magnetic stirrer and slowly sprinkle the required amount of agarose powder into the flask as the solution mixes, to prevent the formation of agarose clumps.
- 4. Weigh the flask and solution before heating.
- Cover the mouth of the flask with plastic wrap, and pierce the wrap with a small hole for ventilation.
- Bring the solution to a boil while stirring, and allow it to boil gently for approximately 10 minutes or until the agarose is completely dissolved.
- 7. Place the flask on a scale, and bring it back to its initial weight (from Step 4) with warm distilled water.
- Mix gently and cool to 50-60°C (at room temperature for at least 20 minutes) before pouring the solution into the casting tray.

Visualization of DNA

For visualization of DNA in the gel, a fluorescent dye can be added to the agarose solution just prior to pouring, or the gel can be stained after electrophoresis. For the intercalating dye ethidium bromide, use a final concentration of 0.5 µg/ml. If more sensitive detection is required, use SYBR[®] Green I nucleic acid gel stain (Invitrogen Cat. no. S-7563), or SYBR[®] Safe DNA gel stain (Invitrogen Cat. no. S33102). Use of SYBR[®] Safe DNA gel stain in conjunction with blue light transillumination is recommended for gel extraction procedures for cloning purposes. Refer to the appropriate instructions for these products for in-gel staining, or post-staining protocols.

Dye Mobility

% Agarose	Bromophenol Blue		Xylene Cyanol	
	TAE	TBE	TAE	TBE
0.3	2,900	2,850	24,800	19,400
0.5	1,650	1,350	11,000	12,000
0.75	1,000	720	10,200	9,200
1	500	400	6,100	4,100
1.25	370	260	3,560	2,500
1.5	300	200	2,800	1,800
1.75	200	110	1,800	1,100
2	150	70	1,300	850

Refer to the following table for the migration of Bromophenol Blue and Xylene Cyanol tracking dyes in relation to DNA:

Product Qualification

The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website.

Go to www.invitrogen.com/support and search for the Certificate of Analysis by product lot number, which is printed on the box.

©2008 Invitrogen Corporation. All rights reserved.

For research use only. Not intended for any animal or human therapeutic or diagnostic use.